Washing apparatus ready detection (WARD)
Martin Isaksson
Martin Isaksson
1 min read

Categories

Table of contents

Using a PocketLab put on the top of a washing machine, we measure the magnetic field generated by the motor. The magnitude of this vector is used to detect if the motor is on, and when the motor has been off for some time, we say that the cycle is finished.

Checkpoint

#library(checkpoint)
#checkpoint("2015-08-26")

Libraries

library(dplyr)
library(tidyr)
library(ggplot2)
library(TTR)
library(printr)

#library(mime)

Read data

Read data from PocketLab CSV and calculate magnitude from x, y and z components. Then use an Exponential Moving Average filter to remove the trend (seems like the sensor does not return to zero when the washing machine motor turns off).

wash <- read.csv("data/Magnetic field368141090.csv", col.names=c("time", "x", "y","z")) %>%
	mutate(
		magnitude = sqrt(x^2 + y^2 + z^2), # Calculate magnitude
		magnitude_ema = EMA(magnitude,20), # Exponential Moving Average
		magnitude_adj = magnitude - magnitude_ema, # Remove trend
		magnitude_abs = magnitude_adj %>% abs %>% EMA(., 50),
		magnitude_abs = scale(magnitude_abs) %>% as.vector, # Absolute value and more EMA
		threshold = ifelse(magnitude_abs > 0, 1, 0)
	) %>%
	filter(time < 1190)

wash %>% head
timexyzmagnitudemagnitude_emamagnitude_adjmagnitude_absthreshold
0.000.06103520.0610352-0.30517580.3171480NANANANA
0.020.0610352-0.0305176-0.12207030.1398491NANANANA
0.080.15258790.0915527-0.33569340.3799408NANANANA
0.160.03051760.12207030.06103520.1398491NANANANA
0.260.00000000.0305176-0.03051760.0431584NANANANA
0.360.00000000.0000000-0.39672850.3967285NANANANA

Rearrange and plot x,y and z components.

wash2 <- wash %>% select(-matches("magnitude"), -threshold) %>% gather("axis", "value",-time)

ggplot(wash2, aes(x=time, y=value, color=axis)) +
	geom_line() +
	theme_classic() +
	facet_grid(axis~.) +
	scale_colour_brewer(palette = "Set1")

plot of chunk mag_axis

Plot the magnitude

ggplot(wash, aes(x=time, y=magnitude)) +
	geom_line() +
	theme_classic()

plot of chunk mag1

Plot the magnitude trend

ggplot(wash, aes(x=time, y=magnitude_ema)) +
	geom_line() +
	theme_classic()
## Warning: Removed 19 rows containing missing values (geom_path).

plot of chunk mag2

Plot the adjusted magnitude (removed magnitude trend).

ggplot(wash, aes(x=time, y=magnitude_adj)) +
	geom_line() +
	theme_classic()
## Warning: Removed 19 rows containing missing values (geom_path).

plot of chunk mag3

Plot the normalized absolute magnitude.

ggplot(wash, aes(x=time, y=magnitude_abs)) +
	geom_line() +
	theme_classic()
## Warning: Removed 68 rows containing missing values (geom_path).

plot of chunk mag4

Using zero as a threshold, plot on or off status.

ggplot(wash, aes(x=time, y=threshold)) + geom_line()+ theme_classic()
## Warning: Removed 68 rows containing missing values (geom_path).

plot of chunk mag5

References

    Suggested citation

    If you would like to cite this work, here is a suggested citation in BibTeX format.

    @misc{isaksson_2015,
      author="Isaksson, Martin",
      title={{Martin's blog --- Washing apparatus ready detection (WARD)}},
      year=2015,
      url=https://blog.martisak.se/2015/08/30/washing-machine/,
      note = "[Online; accessed 2024-10-03]"
    }

    Revisions